dataset.py 15.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# -*- coding: utf-8 -*-
"""
GEPARD - Gepard-Enabled PARticle Detection
Copyright (C) 2018  Lars Bittrich and Josef Brandt, Leibniz-Institut für 
Polymerforschung Dresden e. V. <bittrich-lars@ipfdd.de>    

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program, see COPYING.  
If not, see <https://www.gnu.org/licenses/>.
"""
import os
import pickle
import numpy as np
import cv2
from helperfunctions import cv2imread_fix, cv2imwrite_fix
from copy import copy

28
currentversion = 2
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

def loadData(fname):
    retds = None
    with open(fname, "rb") as fp:
        ds = pickle.load(fp)
        ds.fname = fname
        ds.readin = True
        ds.updatePath()
        retds = DataSet(fname)
        retds.version = 0
        retds.__dict__.update(ds.__dict__)
        if retds.version < currentversion:
            retds.legacyConversion()
        elif retds.zvalimg=="saved":
            retds.loadZvalImg()
    return retds

def saveData(dataset, fname):
    with open(fname, "wb") as fp:
        # zvalimg is rather large and thus it is saved separately in a tif file 
        # only onces after its creation
        zvalimg = dataset.zvalimg
        if zvalimg is not None:
            dataset.zvalimg = "saved"
        pickle.dump(dataset, fp, protocol=-1)
        dataset.zvalimg = zvalimg

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
def arrayCompare(a1, a2):
    print("array compare")
    ind = np.isnan(a1)
    if not np.any(ind):
        return np.all(a1==a2)
    if a1.shape!=a2.shape:
        return False
    return np.all(a1[~ind]==a2[~ind])

def listCompare(l1, l2):
    print("list compare")
    if len(l1)!=len(l2):
        return False
    for l1i, l2i in zip(l1, l2):
        if isinstance(l1i, np.ndarray):
            if not isinstance(l2i, np.ndarray) or not arrayCompare(l1i, l2i):
                return False
        elif isinstance(l1i, (list, tuple)):
            if not isinstance(l2i, (list, tuple)) or not listCompare(l1i, l2i):
                return False
        elif l1i!=l2i and ((~np.isnan(l1i)) or (~np.isnan(l2i))):
            return False
    return True

def recursiveDictCompare(d1, d2):
    for key in d1:
        if not key in d2:
            return False
        a = d1[key]
        b = d2[key]
        print(key, type(a), type(b))
        if isinstance(a, np.ndarray):
            if not isinstance(b, np.ndarray) or not arrayCompare(a, b):
                return False
        elif isinstance(a, dict):
            if not isinstance(b, dict):
                return False
            if not recursiveDictCompare(a, b):
                return False
        elif isinstance(a, (list, tuple)):
            if not isinstance(b, (list, tuple)) or not listCompare(a, b):
                return False
        elif a != b:
            return False
    return True

102 103 104 105 106 107 108
class DataSet(object):
    def __init__(self, fname, newProject=False):
        self.fname = fname
        # parameters specifically for optical scan
        self.version = currentversion
        self.lastpos = None
        self.maxdim = None
109 110 111 112 113
        self.pixelscale_df = None # µm / pixel --> scale of DARK FIELD camera (used for image stitching)
        self.pixelscale_bf = None # µm / pixel of DARK FIELD camera (set to same as bright field, if both use the same camera)
        self.imagedim_bf = None  # width, height, angle of BRIGHT FIELD camera
        self.imagedim_df = None  # width, height, angle of DARK FIELD camera (set to same as bright field, if both use the same camera)
        self.imagescanMode = 'df'    #was the fullimage acquired in dark- or brightfield?
114 115 116 117 118 119 120 121 122 123
        self.fitpoints = []   # manually adjusted positions aquired to define the specimen geometry
        self.fitindices = []  # which of the five positions in the ui are already known
        self.boundary = []    # scan boundary computed by a circle around the fitpoints + manual adjustments
        self.grid = []        # scan grid positions for optical scan
        self.zpositions = []  # z-positions for optical scan
        self.heightmap = None
        self.zvalimg = None
        
        # parameters specifically for raman scan
        self.pshift = None    # shift of raman scan position relative to image center
Hackmet's avatar
Hackmet committed
124
        self.coordOffset = [0, 0]   #offset of entire coordinate system
125 126
        self.seedpoints = np.array([])
        self.seeddeletepoints = np.array([])
Josef Brandt's avatar
Josef Brandt committed
127 128 129 130 131 132 133 134 135 136 137 138
        self.detectParams = {'points': np.array([[50,0],[100,200],[200,255]]),
                             'contrastcurve': True,
                             'blurRadius': 9,
                             'threshold': 0.2,
                             'maxholebrightness': 0.5,
                             'erodeconvexdefects': 0,
                             'minparticlearea': 20,
                             'minparticledistance': 20,
                             'measurefrac': 1,
                             'compactness': 0.1,
                             'seedRad': 3}
        
139 140 141 142 143 144
        self.ramanpoints = []
        self.particlecontours = []
        self.particlestats = []
        self.ramanscansortindex = None
        self.ramanscandone = False
        
145 146 147 148 149 150 151
        self.results = {'polymers': None,
                        'hqis': None,
                        'additives': None,
                        'additive_hqis': None}

        self.resultParams = {'minHQI': None,
                             'compHQI': None}
Hackmet's avatar
Hackmet committed
152
        self.spectraPath = None
153 154 155 156
        self.particles2spectra = None    #links idParticle to corresponding idSpectra (i.e., first measured particle (ID=0) is linked to spectra indices 0 and 1)
        self.colorSeed = 'default'
        self.resultsUploadedToSQL = []
        
157 158 159 160 161 162 163
        self.readin = True    # a value that is always set to True at loadData 
                              # and mark that the coordinate system might be changed in the meantime
        self.mode = "prepare"
        if newProject:
            self.fname = self.newProject(fname)
        self.updatePath()
        
164 165 166 167 168 169 170 171
    def __eq__(self, other):
        return recursiveDictCompare(self.__dict__, other.__dict__)
        
    def getPixelScale(self, mode=None):
        if mode is None:
            mode = self.imagescanMode
        return (self.pixelscale_df if mode == 'df' else self.pixelscale_bf)
        
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    def saveZvalImg(self):
        if self.zvalimg is not None:
            cv2imwrite_fix(self.getZvalImageName(), self.zvalimg)
            
    def loadZvalImg(self):
        if os.path.exists(self.getZvalImageName()):
            self.zvalimg = cv2imread_fix(self.getZvalImageName(), cv2.IMREAD_GRAYSCALE)
        
    def legacyConversion(self, recreatefullimage=False):
        if self.version==0:
            print("Converting legacy version 0 to 1")
            print("This may take some time")
            
            # local imports as these functions are only needed for the rare occasion of legacy conversion
            from opticalscan import loadAndPasteImage
            
            # try to load png and check for detection contours
189 190
            recreatefullimage = recreatefullimage or not os.path.exists(self.getLegacyImageName())
            if not recreatefullimage:
191 192 193 194 195 196 197
                img = cv2imread_fix(self.getLegacyImageName())
                Nc = len(self.particlecontours)
                if Nc>0:
                    contour = self.particlecontours[Nc//2]
                    contpixels = img[contour[:,0,1],contour[:,0,0]]
                    if np.all(contpixels[:,1]==255) and np.all(contpixels[:,2]==0) \
                        and np.all(contpixels[:,0]==0):
198 199
                        recreatefullimage = True
                if not recreatefullimage:
200 201 202
                    cv2imwrite_fix(self.getImageName(), img)
                del img
            
203
            if recreatefullimage:
204 205 206 207 208
                print("recreating fullimage from grid data")
                imgdata = None
                zvalimg = None
                Ngrid = len(self.grid)
                
209
                width, height, rotationvalue = self.imagedim_df
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
                p0, p1 = self.maxdim[:2], self.maxdim[2:]
                for i in range(Ngrid):
                    print(f"Processing image {i+1} of {Ngrid}")
                    names = []
                    for k in range(len(self.zpositions)):
                        names.append(os.path.join(self.getScanPath(), f"image_{i}_{k}.bmp"))
                    p = self.grid[i]
                    imgdata, zvalimg = loadAndPasteImage(names, imgdata, zvalimg, width, 
                                                            height, rotationvalue, p0, p1, p)
                self.zvalimg = zvalimg
                cv2imwrite_fix(self.getImageName(), cv2.cvtColor(imgdata, cv2.COLOR_RGB2BGR))
                del imgdata
            self.saveZvalImg()
            if "particleimgs" in self.__dict__:
                del self.particleimgs
            
            self.version = 1
227 228 229 230 231 232 233 234
            
            
        if self.version == 1:
            print("Converting legacy version 1 to 2")
            if hasattr(self, 'pixelscale'):
                print('pixelscale was', self.pixelscale)
                self.pixelscale_bf = self.pixelscale
                self.pixelscale_df = self.pixelscale
Hackmet's avatar
Hackmet committed
235
                del self.pixelscale
236 237 238 239
            
            if hasattr(self, 'imagedim'):
                self.imagedim_bf = self.imagedim
                self.imagedim_df = self.imagedim
Hackmet's avatar
Hackmet committed
240 241
                del self.imagedim

242 243
            self.version = 2
            
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
        # add later conversion for higher version numbers here
        
    def getSubImage(self, img, index, draw=True):
        contour = self.particlecontours[index]
        x0, x1 = contour[:,0,0].min(), contour[:,0,0].max()
        y0, y1 = contour[:,0,1].min(), contour[:,0,1].max()
        subimg = img[y0:y1+1,x0:x1+1].copy()
        if draw:
            cv2.drawContours(subimg, [contour], -1, (0,255,0), 1)
        return subimg
        
    def getZval(self, pixelpos):
        assert self.zvalimg is not None
        zp = self.zvalimg[round(pixelpos[1]), round(pixelpos[0])]
        z0, z1 = self.zpositions.min(), self.zpositions.max()
        return zp/255.*(z1-z0) + z0
        
    def mapHeight(self, x, y):
        assert not self.readin
        assert self.heightmap is not None
        return self.heightmap[0]*x + self.heightmap[1]*y + self.heightmap[2]
        
266
    def mapToPixel(self, p, mode='df', force=False):
267 268 269
        if not force:
            assert not self.readin
        p0 = copy(self.lastpos)
270 271 272 273 274 275 276 277 278 279 280 281 282
        
        if mode == 'df':
            p0[0] -= self.imagedim_df[0]/2
            p0[1] += self.imagedim_df[1]/2
            return (p[0] - p0[0])/self.pixelscale_df, (p0[1] - p[1])/self.pixelscale_df
            
        elif mode == 'bf':
            p0[0] -= self.imagedim_bf[0]/2
            p0[1] += self.imagedim_bf[1]/2
            return (p[0] - p0[0])/self.pixelscale_bf, (p0[1] - p[1])/self.pixelscale_bf
        else:
            print('mapToPixelMode not understood')
            return
283
    
284
    def mapToLength(self, pixelpos, mode='df', force=False):
285 286 287
        if not force:
            assert not self.readin
        p0 = copy(self.lastpos)
Hackmet's avatar
Hackmet committed
288 289 290
        p0[0] += self.coordOffset[0] 
        p0[1] += self.coordOffset[1]
        
291 292 293 294 295 296 297 298 299
        if mode == 'df':
            p0[0] -= self.imagedim_df[0]/2
            p0[1] += self.imagedim_df[1]/2
            return (pixelpos[0]*self.pixelscale_df + p0[0]), (p0[1] - pixelpos[1]*self.pixelscale_df)
        elif mode == 'bf':
            p0[0] -= self.imagedim_bf[0]/2
            p0[1] += self.imagedim_bf[1]/2
            return (pixelpos[0]*self.pixelscale_bf + p0[0]), (p0[1] - pixelpos[1]*self.pixelscale_bf)
        else:
300
            raise ValueError(f'mapToLength mode: {mode} not understood')
301
    
302 303
    def mapToLengthRaman(self, pixelpos, microscopeMode='df', noz=False):
        p0x, p0y = self.mapToLength(pixelpos, mode = microscopeMode)
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
        x, y = p0x + self.pshift[0], p0y + self.pshift[1]
        z = None
        if not noz:
            z = self.mapHeight(x, y)
            z += self.getZval(pixelpos)
        return x, y, z
        
    def newProject(self, fname):
        path = os.path.split(fname)[0]
        name = os.path.splitext(os.path.basename(fname))[0]
        newpath = os.path.join(path, name)
        fname = os.path.join(newpath, name + ".pkl")
        if not os.path.exists(newpath):
            os.mkdir(newpath)        # for new projects a directory will be created
        elif os.path.exists(fname):  # if this project is already there, load it instead
            self.__dict__.update(loadData(fname).__dict__)
        return fname
    
    def getScanPath(self):
        scandir = os.path.join(self.path, "scanimages")
        if not os.path.exists(scandir):
            os.mkdir(scandir)
        return scandir
        
    def updatePath(self):
        self.path = os.path.split(self.fname)[0]
        self.name = os.path.splitext(os.path.basename(self.fname))[0]
        
    def getImageName(self):
333 334
        return os.path.join(self.path, 'fullimage.tif')

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
    def getZvalImageName(self):
        return os.path.join(self.path, "zvalues.tif")
    
    def getLegacyImageName(self):
        return os.path.join(self.path, "fullimage.png")
    
    def getLegacyDetectImageName(self):
        return os.path.join(self.path, "detectimage.png")
    
    def getDetectImageName(self):
        raise NotImplementedError("No longer implemented due to change in API")
    
    def getTmpImageName(self):
        return os.path.join(self.path, "tmp.bmp")
    
    def saveParticleData(self):
Hackmet's avatar
Hackmet committed
351
        print('Not saving ParticleData into text file...:\nThe current output format might be wrong, if multiple spectra per particle are present...')
352 353 354 355 356 357 358 359 360 361 362 363 364 365
#        if len(self.ramanscansortindex)>0:
#            data = []
#            pixelscale = (self.pixelscale_df if self.imagescanMode == 'df' else self.pixelscale_bf)
#            for i in self.ramanscansortindex:
#                data.append(list(self.ramanpoints[i])+list(self.particlestats[i]))
#            data = np.array(data)
#            data[:,0], data[:,1], z = self.mapToLengthRaman((data[:,0], data[:,1]), microscopeMode=self.imagescanMode, noz=True)
#            data[:,2:7] *= pixelscale
#            header = "x [µm], y [µm], length [µm], height [µm], length_ellipse [µm], height_ellipse [µm]"
#            if data.shape[1]>6:
#                header = header + ", area [µm^2]"
#                data[:,6] *= pixelscale
#            np.savetxt(os.path.join(self.path, "particledata.txt"), data, 
#                       header=header)
366 367 368
            
    def save(self):
        saveData(self, self.fname)
369 370 371
    
    def saveBackup(self):
        inc = 0
Hackmet's avatar
Hackmet committed
372
        while True:
373 374 375 376 377 378 379
            directory = os.path.dirname(self.fname)
            filename = self.name + '_backup_' + str(inc) + '.pkl'
            path = os.path.join(directory, filename)
            if os.path.exists(path):
                inc += 1
            else:
                saveData(self, path)
Hackmet's avatar
Hackmet committed
380 381
                return filename