particleCharacterization.py 7.11 KB
Newer Older
JosefBrandt's avatar
JosefBrandt committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
GEPARD - Gepard-Enabled PARticle Detection
Copyright (C) 2018  Lars Bittrich and Josef Brandt, Leibniz-Institut für 
Polymerforschung Dresden e. V. <bittrich-lars@ipfdd.de>    

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program, see COPYING.  
If not, see <https://www.gnu.org/licenses/>.
"""

import numpy as np
import cv2
25
from copy import deepcopy
JosefBrandt's avatar
JosefBrandt committed
26

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
from .particleClassification.colorClassification import ColorClassifier
from .particleClassification.shapeClassification import ShapeClassifier
from segmentation import closeHolesOfSubImage
from errors import NotConnectedContoursError, InvalidParticleError

class ParticleStats(object):
    longSize = None
    shortSize = None
    height = None
    area = None
    shape = None
    color = None

def particleIsValid(particle):
    if particle.longSize == 0 or particle.shortSize == 0:
        return False
    
    if cv2.contourArea(particle.contour) == 0:
        return False
    return True
    
JosefBrandt's avatar
JosefBrandt committed
48

49 50
def getParticleStatsWithPixelScale(cnt, pixelscale, fullimage, dataset):
    newStats = ParticleStats()
JosefBrandt's avatar
JosefBrandt committed
51
    
52 53 54 55 56 57 58 59
    newStats.longSize, newStats.shortSize, newStats.area = getContourStats(cnt)
    newStats.longSize *= pixelscale
    newStats.shortSize *= pixelscale
    newStats.area *= (pixelscale**2)

    newStats.height = getParticleHeight(cnt, dataset)    
    print('newHeight =', newStats.height)
    newStats.shape = getParticleShape(cnt, newStats.height)
60
    
61 62
    partImg = getParticleImageFromFullimage(cnt, fullimage)
    newStats.color = getParticleColor(partImg)
63
    
64
    return newStats
65 66 67 68 69 70 71 72 73

def getParticleColor(imgRGB, colorClassifier=None):
    img = cv2.cvtColor(imgRGB, cv2.COLOR_RGB2HSV_FULL)
    meanHSV = cv2.mean(img)
    if colorClassifier is None:
        colorClassifier = ColorClassifier()
    color = colorClassifier.classifyColor(meanHSV)
    return color

74 75 76
def getParticleShape(contour, particleHeight, shapeClassifier=None):
    if shapeClassifier is None:
        shapeClassifier = ShapeClassifier()
JosefBrandt's avatar
JosefBrandt committed
77
    shape = shapeClassifier.classifyShape(contour, particleHeight)
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    return shape

def getParticleHeight(contour, dataset):
    zimg = getParticleImageFromFullimage(contour, dataset.getZvalImg())
    if zimg.shape[0] == 0 or zimg.shape[1] == 0:
        raise InvalidParticleError
        
    zimg = cv2.medianBlur(zimg, 5)
    avg_ZValue = np.mean(zimg[zimg > 0])
    if np.isnan(avg_ZValue):  #i.e., only zeros in zimg
        avg_ZValue = 0
    z0, z1 = dataset.zpositions.min(), dataset.zpositions.max()
    height = avg_ZValue/255.*(z1-z0) + z0
    return height

def getContourStats(cnt):
    ##characterize particle
        if cnt.shape[0] >= 5:       ##at least 5 points required for ellipse fitting...
            ellipse = cv2.fitEllipse(cnt)
            short, long = ellipse[1]
        else:
            rect = cv2.minAreaRect(cnt)
            long, short = rect[1]
            
        if short>long:
            long, short = short, long
        
        area = cv2.contourArea(cnt)
    
        return long, short, area

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
def mergeContours(contours):
    img, xmin, ymin, padding = contoursToImg(contours)
    return imgToCnt(img, xmin, ymin, padding)

def getParticleImageFromFullimage(contour, fullimage):
    contourCopy = deepcopy(contour)
    xmin, xmax, ymin, ymax = getContourExtrema(contourCopy)

    img = fullimage[ymin:ymax, xmin:xmax]
    mask = np.zeros(img.shape[:2])
    
    for i in range(len(contourCopy)):
        contourCopy[i][0][0] -= xmin
        contourCopy[i][0][1] -= ymin
        
    cv2.drawContours(mask, [contourCopy], -1, (255, 255, 255), -1)
    cv2.drawContours(mask, [contourCopy], -1, (255, 255, 255), 1)
    
    img[mask == 0] = 0
    img = np.array(img, dtype = np.uint8)
    return img
    
131
def contoursToImg(contours, padding=0):
132 133 134 135 136 137
    contourCopy = deepcopy(contours)
    xmin, xmax, ymin, ymax = getContourExtrema(contourCopy)
    
    padding = padding   #pixel in each direction
    rangex = int(np.round((xmax-xmin)+2*padding))
    rangey = int(np.round((ymax-ymin)+2*padding))
138 139
    if rangex == 0 or rangey == 0:
        raise InvalidParticleError
140 141 142 143 144 145 146 147 148 149 150

    img = np.zeros((rangey, rangex))
    for curCnt in contourCopy:
        for i in range(len(curCnt)):
            curCnt[i][0][0] -= xmin-padding
            curCnt[i][0][1] -= ymin-padding
        cv2.drawContours(img, [curCnt], -1, 255, -1)
        cv2.drawContours(img, [curCnt], -1, 255, 1)
    img = np.uint8(cv2.morphologyEx(img, cv2.MORPH_CLOSE, np.ones((3, 3))))
    return img, xmin, ymin, padding

151 152
def imgToCnt(img, xmin, ymin, padding=0):
    def getContour(img, flag):
153
        if cv2.__version__ > '3.5':
154
            contours, hierarchy = cv2.findContours(img, cv2.RETR_EXTERNAL, flag)
155
        else:
156
            temp, contours, hierarchy = cv2.findContours(img, cv2.RETR_EXTERNAL, flag)
157
        
158 159 160 161 162 163 164
        if len(contours) == 0:   #i.e., no contour found
            raise InvalidParticleError
        elif len(contours) == 1:   #i.e., exactly one contour found
            contour = contours[0]
        else:       #i.e., multiple contours found
            contour = getLargestContour(contours)
            
165 166
        return contour
    
167 168 169 170 171 172 173 174 175 176 177 178 179
    def getLargestContour(contours):
        areas = []
        for contour in contours:
            areas.append(cv2.contourArea(contour))
        maxIndex = areas.index(max(areas))
        print(f'{len(contours)} contours found, getting the largest one. Areas are: {areas}, taking contour at index {maxIndex}')
        return contours[maxIndex]

    img = closeHolesOfSubImage(img)
    contour = getContour(img, flag=cv2.CHAIN_APPROX_SIMPLE)

    if len(contour) < 5:
        contour = getContour(img, flag=cv2.CHAIN_APPROX_NONE)
180
    
181 182 183
    for i in range(len(contour)):
        contour [i][0][0] += xmin-padding
        contour [i][0][1] += ymin-padding
184
        
185
    return contour
186 187 188 189 190 191 192 193

def getContourExtrema(contours):
    try:
        cnt = np.vstack(tuple(contours))
        xmin, xmax = cnt[:,0,:][:, 0].min(), cnt[:,0,:][:, 0].max()
        ymin, ymax = cnt[:,0,:][:, 1].min(), cnt[:,0,:][:, 1].max()        
    except IndexError: #i.e., not a list of contours was passed, but an individual contour. Hence, the above indexing does not work
        xmin, xmax = cnt[:, 0].min(), cnt[:, 0].max()
194 195 196 197 198
        ymin, ymax = cnt[:, 1].min(), cnt[:, 1].max()
        
    xmin, xmax = int(round(xmin)), int(round(xmax))
    ymin, ymax = int(round(ymin)), int(round(ymax))
    
199 200
    return xmin, xmax, ymin, ymax

201 202 203 204 205 206 207 208 209
def getParticleCenterPoint(contour):
    img, xmin, ymin, padding = contoursToImg(contour)
    dist = cv2.distanceTransform(img, cv2.DIST_L2, 3)
    ind = np.argmax(dist)
    y = ind//dist.shape[1]-1
    x = ind%dist.shape[1]-1
    x += xmin
    y += ymin
    return x, y